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An analog of the finite element method is proposed for the solution of natural 
vibrations problems for doubly-periodic systems. The approximate solution is 
constructed for each separate element. The infuence of adjacent elements is 
taken into account by the introduction of force factors and matching conditions. 

Numerical examples are analyzed. 

1, Let the doubly-periodic system be generally referred to an oblique Oz,z, coor- 
dinate system so that the properties of the system are repeated for a displacement a, 
along the (& axis and a2 along 0~~. Let us consider the vibrations of a single element 
bounded by the lines xi’ -- 0, xl’ =- a,, x2’ = 0, x2’ = a2 in a local coordinate 
system. Let us represent the dicplacement vector for the vibrations mode as a series ex- 
pansion in a system of coordinate functions 

n- 
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Here kl is the number of the element under consideration in the double numbering. 
Let us consider the equations of motion and the conditions of element matching result 

in an equation in the coefficient vector C 

pc:“” + vc(M 1) +_ @, 1+1) = 0 (1.2) 

The matrix components P, Q, R are independent of tbe number of the element be- 

cause of the periodic&y of the system properties. 
It can be shown that the general solution of (1.2) is representable, analogously to the 

case of periodic structures Cl, 21, as the sum of solutions of the type 

CC”* 2) = h,“h,‘C 0.3) 

Let P, Qs R be nonsingular matrices. For some fixed value of the complex hs let us 

consider the equation 
(P + hlQ + 9i2R) v = 0 11.4) 

We hence obtain N eigenvalues hrP (A,.& and N eigenvectors v, (hs). 
Let 1 run through the values from 1 to L. let us arbitrarily select L distinct 

values of Aa : &I, . . . , A,,. Let us represent cckz) as the sum 

c(k’)= i i ~~~~~~V~~~~~~ (1.5) 
n=1 .m=r 

The numbers fn,,, are hence found uniquely. Substituting (1.5) into (1.2). and taking 

account of (1.4), we obtain N 1, 
c(“+‘, 1) _ 

c 2 %n @%A G71f%vn (&J (1.6) 
YC=r m=r 

There hence results that in the general case numbers fnm can be found for arbitrary 

k and I such that the expansion N L 

representable as a sum of solutions of the type (l-3), will be valid. 
bet us prove the uniqueness of determining (Q f,,. To do this, let us represent (1.5) as 

(9) =_ i him ; &Zv, 

?ll=l Tl=l 

Let us multiply the left and right sides by the vector rP+ Because the hsfn are distinct, 
we obtain that the determinant det i .&,l IIf 0. Therefore. 

(1.7) 

can be found uniquely, 
Up to now. the vector Q, has been arbitrary. Let us now consider the vector CF to be 

defined so that the conditions vnm.vpp = SPll are satisfied for fixed m . Because of the 

completeness and minimality of the system of vectors vnm for fixed n , these equations 
uniquely define the vector 9. Under these conditions (1.7) yields 
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which indeed proves the uniqueness required. 

The values of hr, h,, equal to one in absolute value, correspond to the solution ofthe 

natural vibrations problem for an unbounded doubly-periodic system, In the case of a 
bounded system, conditions for the boundary elements must be used to construct the fre- 
quency equation. 

2. let us apply the Rayleigh-Ritz method to find the solution of the system (1.2). 
Let us seek the components of the displacement pi as the expansion 

M 

Let us represent the generalized forces or stresses acting on the edges 3%’ = 0, 

%’ = aaas the truncated series 
N N 

Let us analogously expand the generalized forces or stresses acting on the edges xi:,’ = 

0, Xr’ = a, 
o;‘lj = 2 B$;)& (&), &+l = i: R~ikp+r4jjp (Xi) (2.3) 

p=1 p=1 

According to Rayleigh-Ritz method, it must be required that the following functional 

J=(u.~)~-~~(u.u)~+(~.u)~ @.*) 

takes on a stationary value for the element under consideration. 

The scalar product (u .u)r is generated by the strain potential energy, the expression 
(u*u)~ corresponds to the kinetic energy, and the product (e .~)a expresses the poten- 
tial energy of the external forces. 

Substituting (2.1) - (2.3) into (2.4) and equating the derivative ~J/~C~~(kz), we obtain 

(2.5) 

Here the first digit in the triplet subscript of the scalar products denotes the number 
of the scalar product, while the other two denote the number of the edge sections. 

We obtain additional relationships from the condition of equal displacements along 
the boundaries of the elements 
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Formulas (2.5), (2.6) yield a system of J (M + N i_ P) linear algebraic equations. 
The solution of this system can be found as the sum of solutions of the form 

3, As an illustrative example, let us examine the vibrations of an infinite plate sup- 
ported on a rectangular lattice of diaphragms which are absolutely stiff in their planes 
and absolutely flexible out of the planes (hinge lines). Setting P = N, &I = jjis, 
let us select the following functions as fm, cp,{, $, : 

fm = qh$pr qn = sin +, IJJp = sin? 

The system (2.5) becomes 

(3.11 

The matching conditions yield 

5 n [(- l)V$!$f _ C$$r”)] z 0, 

Tb==l 7L==l 

Taking account of (2.7), we obtain an expression for C,, from (3. I) 

c = RP --2n [pha$z (o,p2 - w2)l-l f&&n + @LB,,) 
The first of equations (3.2) yields 

.M 

This last equation results in a system of N equations with IV unknowns 

Here 

P,, = blpb,, (w& - w2)-l, b,, = pa,~,a;~ [i - (- i)P ?~a] 

From the condition that the determinant of the system (3.2) equals zero we obtain a 
constraint on the frequency. We obtain other constraints from the conditions 1 h, 1 = 
1 ?L, 1 -= 1. The frequency spectrum is a band spectrum, Assuming n, = a2 = a, 

2 = 02n-~a4ph / I) for a square cell, we find the boundary of the first frequency 
bzid: 2 _i: CO.+ < ol*. The estimate of wl* depends on the number N. For N = 5 

we obtain @l* = 4.17. The exact value of O* 1 equals the lowest natural vibrations 
frequency 3.646 for a cell clamped along the contour. 

The construction of the bending moments can be illustrated by an example of cylind- 
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rical vibrations. A graph of the bending moment &f~l is given in Fig. 1 for this cell. 
The ~ontinuo~ line corresponds to the exact 
solution and the dashes to the approximate 
solution for N = 3. The asterisks yield the 
values of the edge moments found by means 

of (2.3). A comparison results in the deduc- 
tion that far from the perturbation line the 
state of stress can be found approximately by 

differentiating the solution. The state ofstress 
can be found by means of (2.3) on the pertur- 

Fig. 1 
bation lines. 

4. Let us study the behavior of the factors 
A,, & for the simplest boundary conditions in the case of a finite doubly-~riodic system. 

The equation for &will be 

h12 - 2h,y, -/- 1 = 0, y1 = cos i&a, - p&r-‘sin kra, 

This equation has two roots (a,, and h ts = &r-l). For 1 y 1 < 1 both roots are com- 

plex and equal to one in absolute value. Introducing two constants A,, and A1sr we ob- 
tain C,P = &I - cos k&“,,~ + (h,, - cos kra,) ?L&4,, 

Cl&“) = -CJk) L- ta,,kA,, -+- a12kkt12) sin k,a, 

CJk) = -call~+ull + a,pA12) sin /+r 

Let two opdosite edges be supported. We find that this is equivalent to the conditions 
C&(i) = 0, Ci4@) = 0. Hence 

(alp - a,,q sin2 k,o, = 0, (a141, + ad,,) sin le,o, = 0 

Noting that hrt = +_I for sin k,a, = 0, we obtain that h,, should satisfy the 
equation ap = i (4.1) 

Let us find the natural vibration frequencies and modes of the part of the structure 
considered above. Let us consider that the rectangular plate occupies K% cells, such 
that k varies between one and K, and t between one and L. Moreover, let us assume 
that each two opposite edges of the plate are either supported or fixed. Let us apply 

the Bolotin asymptotic method [3] for the solution. Let us use the following expression 
for the oeriection within each cell: 

The condition that the deflection on the cell contour equals zero and the matching 
conditions for the solutions on the cell boundary, yield 

C&O _ -Cre(~, Ci4@) = - C,,fk) sin k,a, - Crz(@ sin k,a, 

C#+l) z - ,‘&W, C,l(h+u = cos k,a, C1l(k) - sin kra, C12(k) - $- c#) 

All the roots of this equation correspond to the natural vibrations modes. with the 
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exception of the case when sin k,a, # 0, h, = +I. The appropriate vibration modes 
equal zero identically. 

Let two opposite edges be fixed. This is equivalent to the conditions 

ktC#) + pic,s(i) = 0, JJ,C~~(~) - (sin k,a, + f3,k,-l cos kla,) C12(k) = 0 

Hence 

(ali - &)(Ml,, - &,A,,) = 0, (h,, - h,)2(1,,K - k,,K) = 0 

Therefore, (4.1) should be satisfied. 

All the roots of (4. l), with theexception of the case when sin Ic,a, = 0 will corre- 
spond to the natural vibration frequencies and modes. In this case Clj’K’ = 0 (j = 1, 
2, 3, 4). 

There results from (4.1) that hi equals one in absolute value, i. e. it is possible to put 

A1 = exp (icpi). We obtain from (4.1) 

Kq, = 772x (712 -= O,l, ..) K) 

Using the equation for hi, we find 

Analogously, we obtain an equation for the variable 2s 

cos ‘ps = cos kza, - fi,lc,-lsin li,a, 

The results of calculating the lowest group of dimensionless frequencies 0, = 
GXZ~JC-~ (oh / D)lf2 for the case of a square cell (a~ = a2 = a) are given in the table 
(it has the form of a symmetric matrix). In case all the edges are supported, the last 
column and the last row in the table should be deleted, while the first column and first 

row should be deleted in the case of clamped contour. If two edges are supported and 
the others are fixed, then the first column and last row should be omitted. 

_- 

2.00 
2.03 
2.11 
2.24 
2.39 
2.57 
2.75 
2.88 
2.93 

- 
“.OCi 
2.14 
B.27 
2.41 
2.59 
2.77 
2.00 
2.95 

- .- - 

a-.;() 1 1 
2.32 2.43 
2.45 2.58 2-66 
2.63 2.75 2.88 
2.79 2.90 3.03 
2.93 3.112 3.14 
2.97 

I 
3.07 

1 
3.19 

- 

- 
- 

3-02 
3.17 
3.28 
3.31 

-.- 

- 
_- 
- 
- 
- 

324 
3 .:39 

1 3.42 

- 

- 

- 

368 
3.52 

5. Let us study the asymptotic properties of the frequencies for a rectangular plate 
with a large, but finite, number of spans in both directions. Let us use the results of Sect. 
4, First, let us note that points on the plane of the wave numbers ICI, k2 which correspond 
to the natural vibration frequencies and modes are grouped in domains governed by the 
inequalities 1 ~1 I -< 1, I 1~~ I -s< 1. It is interesting to find the density of the frequency 
numbers of the /cl, k, plane. Let some kl, kz satisfy the equations 
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Let us find A,kr and AELIk2, which correspond to an increase in I-‘, by one. Then the 
desired density will apron-lately equal n (kr, k,f s (AlklA~k~ - Al~r~A~k)-’ or 

n (kl, kc) v 1 I: 1 /if, [(‘i - *f~‘)(l - 73)]-‘:2, F = jlf- -(I @$)-1 s1,y2 

f, -: yla --- 2,3;Q) sc( + $lk;la, c, 

‘71 -7 h/h, qz i- kl /A?, sx = sin k,az, c, mm; cos Ic,n,, (z Y 1, 2) 

The density of the frequency distribution on the w axis can be found by integration 

r : h2 -t l,.z* = o (ph / I.@‘; kl,? > 0, 1 yl;$ 1 < 1 

The results of calculating the dimensionless frequency density 

n* (0) = 4 n (D / pk)“‘s (KLa~a,)-%a (0) 

are given in Fig. 2 for a plate with square (al = a,) cells as a function of the reduced 

frequency. 
n 

?.f 

70 15 

Fig. 2 

The frequency spectrum is a banded spectrum. The frequency density receives finite 

increments at frequencies which are natural for a cell supported along the contour (posi- 

tive increments) and for a fixed cell(negative). Logarithmic-type singularities exist at 

frequencies which agree with the natural frequencies for cells supported along two oppo- 
site edges and fixed at the other two. 

Let us examine frequency bands such that an infinitesimal change in the vibrations 
mode will correspond to an infinitesimal change in the frequency for each of the bands. 

In contrast to the case of a beam, the frequency bands for plate can be superposed, For 
example, five essentially different natural vibrations modes correspond to each frequency 
on the segment [ZO. 21, 311. 
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Elastic fibrous composites with an arbitrary cell microstructure are studied. A 

procedure is developed for determining the state of stress and the macroscopic 
properties of such materials. A rigorous foundation is given for the algorithms 

obtained. Results of computations are presented. 
Composites with the simplest cell microstructure have been studied in Cl], as 

well as by the method of [Z] in [3]. General methods for investigating elastic 

inhomogeneous structures are contained in [4, 51. 

1. Computatfonal scheme for a composite, Formulation of the 
problem, Let us consider a three-dimensional isotropic medium reinforced by a doub- 
ly-periodic (in the sense of the geometry and elastic characteristics) system of groupsof 
rectilinear fibers with cylindrical cavities (Fig. 1). The geometric and elastic properties 
of such a medium are described completely by the microstructure of the (fundamental) 
cell being duplicated periodically. Let us assume that the fibers are set in the medium 
with some transverse tension, identical at congruent points and constant along the fiber 
length. The connection between the medium and fiber is such that the force vector va- 

ries continuously during passage through the contact boundary, while the displacement 

vector undergoes a jump due to the transverse tension. 

Fig. 1 


